Accurate detection of complex structural variations using single molecule sequencing
نویسندگان
چکیده
Structural variations (SVs) are the largest source of genetic variation, but remain poorly understood because of limited genomics technology. Single molecule long read sequencing from Pacific Biosciences and Oxford Nanopore has the potential to dramatically advance the field, although their high error rates challenge existing methods. Addressing this need, we introduce open-source methods for long read alignment (NGMLR, https://github.com/philres/ngmlr) and SV identification (Sniffles, https://github.com/fritzsedlazeck/Sniffles) that enable unprecedented SV sensitivity and precision, including within repeat-rich regions and of complex nested events that can have significant impact on human disorders. Examining several datasets, including healthy and cancerous human genomes, we discover thousands of novel variants using long reads and categorize systematic errors in short-read approaches. NGMLR and Sniffles are further able to automatically filter false events and operate on low amounts of coverage to address the cost factor that has hindered the application of long reads in clinical and research settings.
منابع مشابه
I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملHySA: a Hybrid Structural variant Assembly approach using next-generation and single-molecule sequencing technologies.
Achieving complete, accurate, and cost-effective assembly of human genomes is of great importance for realizing the promise of precision medicine. The abundance of repeats and genetic variations in human genomes and the limitations of existing sequencing technologies call for the development of novel assembly methods that can leverage the complementary strengths of multiple technologies. We pro...
متن کاملSuccessful noninvasive trisomy 18 detection using single molecule sequencing.
BACKGROUND Noninvasive trisomy 21 detection performed by use of massively parallel sequencing is achievable with high diagnostic sensitivity and low false-positive rates. Detection of fetal trisomy 18 and 13 has been reported as well but seems to be less accurate with the use of this approach. The reduced accuracy can be explained by PCR-introduced guanine-cytosine (GC) bias influencing sequenc...
متن کاملDetection of Nocardia Asteroides Complex in Clinical Isolates by Real-Time Polymerase Chain Reaction
Background and Aims: Nocardia asteroides complex is the most common cause of infectious diseases due to nocardiosis. Interspecies differentiation of Nocardia genera is essential for prognosis and timely proper treatment, as well as for epidemiological studies. Since each genus has its own antibiotic resistance, precise careful diagnosis is of prime importance. As compared to biochemical and phe...
متن کاملPacBio Sequencing and Its Applications
Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural varia...
متن کامل